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Abstract. The M3D-C1 (Breslau et al 2009 Phys. Plasmas 16 092503) code is designed
for performing three-dimensional nonlinear magnetohydrodynamics (MHD) calculations of a
tokamak plasma that span the timescales associated with ideal and resistive stability as well
as parallel and perpendicular transport. This requires a scalable fully implicit time advance
where the time step is not limited by a Courant condition based on the MHD wave velocities or
plasma flow but is chosen instead to accurately and efficiently resolve the physics. In order to
accomplish this, we make use of several techniques to improve the effective condition number
of the implicit matrix equation that is solved every time step. The split time advance known as
the differential approximation (Caramana 1991 J. Comput. Phys. 96 484) reduces the size of
the matrix and improves its diagonal structure. A particular choice of velocity variables and
annihilation operators approximately splits the large matrix into three sub-matrices, each with
a much improved condition number. A final block-Jacobi preconditioner further dramatically
improves the condition number of the final matrix, allowing it to converge in a Krylov solver
(GMRES) with a small number of iterations. As an example, we have performed transport
timescale simulations of a tokamak plasma that periodically undergoes sawtooth oscillations
(Von Goeler et al 1974 Phys. Rev. Lett. 33 1201). We specify the transport coefficients and
apply a ‘current controller’ that adjusts the boundary loop-voltage to keep the total plasma
current fixed. The short-time plasma response depends on the initial conditions, but the long-
time behavior depends only on the transport coefficients and the boundary conditions applied.
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1. Introduction

The three-dimensional (3D) resistive magnetohydrodynamic (MHD) equations are a mixed system of
equations that have both hyperbolic and parabolic terms. This leads to multiple timescales when applied to
high-temperature magnetized plasmas, such as that which is confined in a modern tokamak. The hyperbolic
terms are associated with ideal MHD wave propagation and global instabilities. These are the shortest
timescales, typically microseconds or less. The parabolic terms are associated with the diffusion and transport
of the magnetic field, current, pressures and densities. These are the longest timescales, typically tens to
hundreds of milliseconds or longer. To calculate both phenomena in a single simulation requires a highly
implicit formulation so that the time step is determined by accuracy requirements only, not by numerical
stability requirements such as the Courant condition. The implicit solution procedure is complicated by the
fact that the multiple timescales present in the physics lead to a very ill-conditioned matrix equation that needs
to be solved each time step. In this paper, we describe three techniques used in M3D-C1 [1] to precondition this
matrix equation so that it may be solved efficiently using GMRES [4] or other iterative solvers suitable for non-
symmetric matrices. The techniques are: the split implicit method [2] (section 3), the annihilation operators
(section 4) and the block-Jacobi preconditioner (section 5). These three techniques, when used together, enable
accurate and efficient solutions, even when using fine spatial meshes and large time steps that greatly exceed
the Courant condition for the fastest wave.

The M3D-C1 code uses a streamfunction/potential representation of the magnetic and velocity vector
fields and applies corresponding annihilation operators in a way that is similar, but not identical, to that
used in M3D [5, 6]. This representation builds on the reduced-MHD representation used in JOREK [7] and
BOUT++ [8], but extends it to the full MHD equations. The split implicit method described in section 3 is very
similar to that used in the NIMROD [9] code and that used as a preconditioner for the Newton–Krylov solve
in the PIXIE3D [10] and XTOR [11] codes. However, M3D-C1 is the only code that uses 3D finite elements
with C1 continuity (continuous first derivatives across element boundaries), and this feature allows these two
preconditioning techniques to be combined in a way that would be very inefficient with other representations.
The underlying reason is that when the split implicit method and annihilation operators are applied to the M3D-
C1 representation of the vector fields, fourth order spatial derivatives occur in the equations. These fourth order
spatial derivatives require C1 elements when the Galerkin method is applied and two integration-by-parts are
performed [12].

The other unique feature of this effort is using the block-Jacobi preconditioner described in section 5 to
dramatically improve the condition number of the entire matrix by solving for all the in-plane strong couplings
directly. This technique relies on the use of finite elements (or finite differences) in the toroidal direction, as
opposed to the spectral representation used in NIMROD, JOREK and XTOR.
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2. The equations and their properties

The partial differential equations we are concerned with are the following (SI units) [13]:

∂n

∂t
+ ∇ • (nV) = 0, continuity, (1a)

∂B
∂t

= −∇ × E, ∇ • B = 0, µ0J = ∇ × B, Maxwell, (1b)

nMi

(
∂V
∂t

+ V • ∇V
)

+ ∇ p = J × B − ∇ •ΠGV − ∇ •Πµ, momentum, (1c)

E + V × B = ηJ +
1

ne
(J × B − ∇ pe − ∇ •Πe), Ohm’s law, (1d)

3

2

∂pe

∂t
+ ∇ •

(
3

2
peVe

)
= −pe∇ • Ve + ηJ 2

− ∇ • qe + Q1, electron energy, (1e)

3

2

∂pi

∂t
+ ∇ •

(
3

2
piV

)
= −pi∇ • V −Πµ : ∇V − ∇ • qi − Q1, ion energy. (1f)

The symbols have their normal meanings with n = ne = ni being the electron and the ion particle density, V is
the ion fluid velocity, Ve ≡ V−J/ne is the electron fluid velocity, B and E are the magnetic and electric fields,
J is the electrical current density, p = pe + pi is the total pressure (the sum of electron and ion pressures),
Πµ is the viscosity tensor [14], Q1 is the classical equipartition term and qe, qi are the electron and ion heat
fluxes, which need to be supplied to close the equations.

The objective of the M3D-C1 project is to solve these equations as accurately as possible over long
timescales in 3D toroidal geometry with realistic boundary conditions without making further approximations.
The solution procedure is optimized for a low-β torus (where β ≡ 2µ0 p/B2 is the ratio of fluid to magnetic
pressure) with a strong toroidal magnetic field such as that which exists in a modern tokamak. The equations
describe ideal MHD phenomena that occur over timescales τI , magnetic reconnection phenomena that occur
over timescales τR, and the transport of particles, heat, momentum and the magnetic field that occur over
timescales τT. The timescales for these distinct phenomena satisfy the inequalities

τI � τR � τT. (2)

This is the primary source of the multiple timescales that must be dealt with.
However, even within ideal MHD as applied to a tokamak there are a wide range of timescales. These

stem from the three wave solutions in a low-β magnetized plasma that become nearly orthogonal and largely
distinct [13]. The slow wave, with velocity VS, only propagates parallel to B, only compresses the fluid in the
parallel direction and does not perturb the magnetic field. The Alfvén wave, with velocity VA, also propagates
only parallel to B, is incompressible and only bends the magnetic field (does not compress it). The fast wave,
with velocity VF, is the only wave that can propagate perpendicular to B. It only compresses the fluid in the
perpendicular direction. This is the wave that makes the equations stiff. When applied to tokamak geometry
for studying MHD instabilities which propagate nearly perpendicular to the magnetic field, k • B ' 0, the
three wave velocities satisfy the inequalities

VF � VA � VS. (3)

This leads to multiple timescales even within ideal MHD.
The multiple timescales require using an implicit numerical algorithm so that the time step can be large

compared to the Courant condition for the fastest wave and still maintain numerical stability. The implicit
solution requires evaluating the spatial derivatives at the new time level. If we discretize the equations in space
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(using finite differences, finite elements or spectral decomposition) and linearize them about the present time
level, the time advance equations to go from time step n to time step n + 1 take the form

A • Xn+1
= R

(
Xn) . (4)

Here Xn+1 is the complete solution (n, V, B, p) at the new time level, the right side is a function only
of the old time level and the matrix A is a very large (typically 107

× 107 or larger) non-diagonally dominant,
non-symmetric, ill-conditioned sparse matrix. The ill-conditioning is a direct result of the fact that this matrix
contains all of the MHD wave phenomena in it. We next describe the three physics-based preconditioning
techniques used to transform this equation into one that can be efficiently solved with an iterative sparse
matrix Krylov sub-space solver such as GMRES.

3. The split implicit method

The split implicit method is a technique for reducing the size of the matrix A in equation (4) and making it
more symmetric and diagonally dominant by algebraically eliminating the new time level magnetic field and
pressure, Bn+1 and pn+1, in terms of the new time level velocity Vn+1. As an example, consider the simple 1D
wave equation for the velocity V and pressure p:

∂V

∂t
= c

∂p

∂x

∂p

∂t
= c

∂V

∂x


∂2V

∂t2
− c2 ∂2V

∂x2
= 0. (5)

A fully implicit finite centered-in-space finite-difference method would evaluate the spatial derivatives at
the new time level. Let t = nδt , x = jδx and s ≡ cδt/δx ; then we have

V n+1
j = V n

j + s
(

pn+1
j+1/2 − pn+1

j−1/2

)
, (6a)

pn+1
j+1/2 = pn

j+1/2 + s
(

V n+1
j+1 − V n+1

j

)
. (6b)

The split implicit method uses equation (6b) to eliminate the new time pressure from equation (6a) in favor of
higher spatial derivative of the new time velocity. We thus obtain the pair of equations:

V n+1
j − s2

(
V n+1

j+1 − 2V n+1
j + V n+1

j−1

)
= V n

j + s
(

pn
j+1/2 − pn

j−1/2

)
, (7a)

pn+1
j+1/2 = pn

j+1/2 + s
(

V n+1
j+1 − V n+1

j

)
. (7b)

The finite-difference equations (7a) and (7b) will give exactly the same answers as equations (6a)
and (6b), but can be solved sequentially. First, equation (7a) is solved for the new time velocities V n+1

j and

then equation (7b) is solved for the new time pressure pn+1
j . Also the matrix corresponding to equation (7a)

is seen to be half the size of the matrix corresponding to equation (6a) and (6b) (since it involves only V n+1

and not pn+1) and is symmetric and diagonally dominant. The matrix corresponding to equation (7b) is just
the identity matrix since everything on the right side is known.

So, in this case, the algebraic substitution takes one from having to solve a 2N × 2N anti-symmetric
system that has large off-diagonal elements to sequentially solving an N × N symmetric system that is
diagonally dominant, and following this with a trivial update that does not involve a matrix solve. These
systems are mathematically equivalent and will give the same answers for infinite precision arithmetic, but the
second system is better suited for iterative solvers. This same technique is generalized to include the magnetic
field and three variables representing the velocity field and used in M3D-C1 to solve first for the velocity field
at the new time level and then for the pressure and magnetic field variables using the new time velocities [15].
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Figure 1. Comparison of the amount of CPU time required for one time step using the split and unsplit
formulations for a typical problem. For a sufficiently large problem size, the unsplit method fails to
converge.

As an illustration of the effectiveness of this technique, we show in figure 1 a comparitively weak
scaling study where this transformation was (split) and was not (unsplit) performed, but where the same
preconditioning techniques as those described in sections 4 and 5 are applied. It is clear that when using
the GMRES Krylov solver to solve the 3D matrix equation, the split method always converges in a fewer
iterations than does the unsplit method. This difference is more pronounced for large numbers of mesh and
processor nodes, and for large enough systems, the unsplit method fails to converge at all.

4. The annihilation operators

In order to further improve the properties of the matrix A, we express the 3D velocity vector in terms of threee
scalar fields (U, ω, χ) as follows using cylindrical (R, φ, Z) coordinates:

V = R2
∇U × ∇φ + R2ω∇φ +

1

R2
∇⊥χ. (8)

The operator ∇⊥ denotes the gradient in the (R, Z) plane; i.e. orthogonal to ∇φ. The first term, U , is
associated mainly with the shear Alfvén wave. It is constructed in such a way that it does not compress the
strong toroidal magnetic field. The second term, ω, is mainly associated with the slow wave and also does not
compress the toroidal magnetic field. The last term, χ is associated mainly with the fast wave. This term alone
does compress the toroidal field. It has been demonstrated that this form for the velocity vector can yield very
accurate solutions for linear ideal MHD instabilities in low-β tokamak plasmas [16].

To obtain the scalar time-advancement equations, we apply annihilation projections to the momentum
equation as it is modified by the split-implicit method described in the last section. Thus, instead of taking
Cartesian projections of the vector momentum equation (1c) (as modified by the split implicit method), we
form three scalar projections by successively operating with the three projection operators

∇φ • ∇⊥ × R2, (9a)

R2
∇φ•, (9b)

− ∇⊥ • R−2. (9c)

These three projections, together with the form of the velocity field, have the effect of approximately
separating the dynamics associated with each of the three MHD waves into separate diagonal blocks. The
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block associated with the projection (9a) contains the shear Alfvén wave dynamics and multiplies the velocity
variable U . The block associated with (9b) contains the slow wave dynamics and multiplies the velocity
variable ω. Similarly, the block associated with (9c) contains the bulk of the fast wave dynamics and multiplies
the velocity variable χ .

The effect of the annihilation operators on the matrix A is schematically shown in the following equation:  →

[ ]
[ ]

[ ]

. (10)

Since the matrix is transformed to one with three approximate diagonal blocks, each multiplying a
separate component of the velocity field, it is now only the condition number of each of the diagonal blocks
that is relevant for the efficiency of the iterative solver, not the condition number of the entire matrix. This
structure with the dominant terms appearing only in the three diagonal blocks is maintained in the Krylov
solver because the Krylov basis space is formed by repeated multiplication of the matrix in equation (10).

It is worth noting that the M3D-C1 code can be run with one, two or three velocity variables. Keeping
only one velocity variable, U , corresponds to 2-variable reduced MHD, and just keeps the upper left diagonal
block in equation (10). Keeping both U and ω corresponds to 4-variable reduced MHD and keeps the upper
two diagonal blocks in equation (10). Keeping all three velocity variables corresponds to full MHD, and keeps
all three diagonal blocks.

We can illustrate how effective these annihilation projections are by forming the equivalent of the matrix
A of equation (4) (but after the split implicit method and the annihilation operators have been applied) and
calculating all of its eigenvalues. The ratio of the largest to the smallest will give the condition number. We
do this first for a ‘cylindrical tokamak’ configuration that has parameters of a low-β tokamak with aspect ratio
A = 10 but with no toroidal curvature. Because it is a periodic cylinder rather than a torus, the major radius
R in equation (8) is a constant that is set to unity. We performed three calculations in which we form three
matrices corresponding to keeping one, two or three velocity variables. We then calculate all the eigenvalues
of each of these three matrices and plot the result in figure 2. In order to make this analysis tractable, we
perform these operations on a linearized 2D form of the matrix A where we have assumed a φ dependence of
exp[in φ] with n = 1.

We see that when keeping only one velocity variable, U (far left in the figure), the eigenvalues range
from about 10−2 to 103, a range of about 105. These are the eigenvalues associated with the shear Alfvén
wave. We then reform the matrix, keeping two velocity variables and two annihilation projections this time,
and re-compute the eigenvalues and plot them in the middle column of figure 2. It is seen that the eigenvalues
associated with the shear Alfvén wave are almost unchanged, but that a new set of eigenvalues appear in the
range of about 10−6–101, a range of about 107. These are associated with the slow wave. Finally, we reform
the matrix keeping all three velocity variables and all three annihilation projections and again calculate the
eigenvalues and plot them on the right of figure 2. We see that again the eigenvalues associated with the shear
Alfvén wave are almost unchanged, those associated with the slow wave are modified slightly and a new set
of eigenvalues appear that are associated with the fast wave and are in the range 102–107.

Thus, we see that the annihilation operators have led to a matrix that is block-diagonally dominant
(i.e. there are three diagonal blocks, one for each type of eigenmodes), whereas using different projections
of the equations would lead to a less dominantly block-diagonal structure. Each of the three blocks has a
condition number greatly reduced from the condition number of the full matrix. Since these diagonal blocks
are approximately decoupled from one another in the Krylov iterations, we expect that the block diagonal
matrix so formed will converge in significantly fewer iterations that the original one. This assertion cannot be
directly tested in M3D-C1 because the form of the velocity vector and annihilation operators are built into the
formulation at a fundamental level and cannot be changed.

5. Block-Jacobi preconditioner and parallel scaling

The M3D-C1 code uses a triangular wedge high-order finite element as shown in figure 3 that is a tensor
product of a reduced quintic triangular element in the (R, Z) plane [17] and a Hermite cubic element [12] in
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Figure 2. Illustration of eigenvalues of the matrix A from equation (4) when keeping 1, 2 or 3 velocity
variables. It is seen that the eigenvalues split into three groups corresponding to the Alfvén, slow
and fast waves, respectively. This analysis was performed for a 2D A matrix assuming φ dependence
exp[in φ] with n = 1.

the toroidal angle ϕ. Each scalar field is represented by 12 variables (or degrees of freedom (DOF)) at each
node. Because the element ordering is structured in the toroidal angle and each plane is coupled only to the
two neighboring planes, the final matrix we obtain after performing the Galerkin integrations takes on a block
triangular structure:

A j • Y j−1 − B j • Y j + C j • Y j+1 = D j . (11)

The large sparse matrices A j , B j , C j represent all the couplings within the plane j and with the two adjacent
planes. Whereas in principle, one could solve equation (11) with the block tridiagonal algorithm; this direct
approach does not scale well. Instead, what we do is to precondition the large 3D matrix by multiplying each
block row by the inverse of the diagonal block, B−1

j . This is done in terms of a block-Jacobi preconditioner

using SuperLU dist [18] or MUMPS [19]. This is now a preconditioning option within PETSc3 so that each
diagonal block matrix needs to be factored but never actually inverted. A typical PETSc ‘options file’ for a
case with 16 toroidal planes in which SuperLU dist was used to factor the blocks is shown in table 1.

Physically, this preconditioner is motivated by the small zone size and hence the strong couplings within
a plane and by the anisotropy introduced by the strong toroidal magnetic field. We thus precondition the 3D
matrix by effectively directly inverting the components within each poloidal plane simultaneously. It is shown
in the appendix that even for a model problem with a single scalar field, this can dramatically improve the
condition number of the matrix. Even for this isotropic problem if the zone size in the ‘in plane’ and ‘across
plane’ directions differs by a factor of 25, the improvement in the condition number can be by a factor of 104

or more as shown in table A.1.
Even more dramatic is the result shown in figure 4, where we have taken a full 3D torus with aspect ratio

A = 3 and calculated all the eigenvalues for NV = 1, 2 and 3 velocity variables both before (in black) and

7
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Figure 3. Triangular wedge integration volume is the tensor product of a reduced quintic triangle in
(R, Z) and a Hermite cubic element in ϕ.

Table 1. Options file used with PETSc for a problem with 16 planes.

-pc type bjacobi
-pc bjacobi blocks 16
-sub pc type lu
-sub pc factor mat solver package superlu dist
-sub ksp type preonly
-ksp type fgmres
-ksp rtol 1.e-9

Table 2. Data for the scaling study of figure 5. ‘Size’ means the approximate linear size of the triangles.
‘Planes’ is the number of toroidal planes. ‘C/PL’ are the number of processors per plane. Loop T is the
total time for 1 time step(s). Solve T is the total time spent in the preconditioners and solvers per time
step. #ITER is the number of iterations used in GMRES for solving the preconditioned velocity matrix
for 1 time step.

Size Planes C/PL LOOP T SOLVE T #ITER

A 0.08 8 12 200 12 54
B 0.08 16 12 202 14 100
C 0.04 16 48 236 31 84
D 0.04 32 48 242 37 141
E 0.03 40 72 270 50 173
F 0.03 60 72 275 54 226
G 0.02 16 192 325 100 77
H 0.02 24 192 332 108 105
I 0.02 32 192 335 110 122
J 0.02 64 192 340 140 256

after (in red) the block-Jacobi preconditioner is applied. The discretized model had a scaled down number of
zones, but with the same ratio of sizes as used in the studies listed in table 2 and in figure 5. The black curve
shows the same general trend as in figure 4, except that the new modes are not visible in going from NV = 2
to NV = 3 because the R factors in the definition of the velocity field, equation (8), have effectively rescaled
the eigenvalues associated with the U and χ variables so that they now overlap.

However, what is remarkable is the difference between the original (black) and the preconditioned (red)
eigenvalues. The block-Jacobi preconditioner, acting on the matrix formed by the annihilation operators, has
reduced the ratio of eigenvalues from about 1015 to approximately 30! This is a tremendous reduction of the
condition number of the matrix, and one that now makes iterative solution highly feasible.

The results of a weak scaling study in which these preconditioning techniques are used are shown in
figure 5 and table 2. In this study, there were approximately 200 nodes per core kept fixed. Since each scalar

8
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Figure 4. All the eigenvalues of a full 3D matrix are calculated and plotted both before (black) and
after (red) the block-Jacobi preconditioner has been applied for 1, 2 and 3 velocity variables. The ratio
of the largest to the smallest eigenvalue has been reduced from about 1015 to approximately 30!

Weak Scaling Study

Number of Processors
000010001001

100

200

300

400

500
600
700
800
900

1000

.08

.04 

.03 

.02 
Ideal Scaling

Figure 5. Weak scaling study on a Cray XE6 (Hopper) at NERSC. We plot the wall clock time for 1
time step versus the number of processors (and elements). The approximate linear triangle size varied
from 0.02 to 0.08 and the number of toroidal planes varied from 8 to 64. The number of elements
per processor remained constant from 96 to 12,288 processors. Approximately 7200 matrix rows were
associated with each processor for the velocity solve for a total matrix rank of ∼ 108 for the largest
problem size.

variable is represented by 12 DOF per node and the three velocity variables are solved together, there were
about 7200 matrix rows associated with each core.

The approximate linear size of the zones that make up the unstructured triangles within a poloidal plane
varied from 0.08 to 0.02 in this study, which corresponds to a factor of about 16 in the number of zones in

9
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Figure 6. Repeating sawtooth cycle. Top: kinetic energy versus time. Bottom: a sequence of Poincaré
plots of the magnetic field during a single cycle.

the cross-sectional area. The number of toroidal planes varied from 8 to 64. The time step was kept fixed at
1t = 20 τA. We see that as we increase both the number of zones and the number of processors by a factor of
about 128, the cycle time increases only by about 70% and the number of iterations required for the velocity
matrix iterative solve increases only by a factor of 5. Even at the largest problem size, the time spent in the
solvers (including the block-Jacobi preconditioner) did not dominate the loop time. Had we not performed the
block-Jacobi preconditioner, the GMRES iteration would fail to converge even with a 1000 iteration maximum.

6. Results

As an illustration of the effectiveness of this method, we present in figure 6 the results of a multiple timescale
tokamak simulation that spans the transport, reconnection and stability timescales. For simplicity, we took the
plasma density to be constant in time and space. In this simulation, we specify a transport model by applying an
approximate Spitzer resistivity model, η ∼ p−3/2, and an approximate Braginskii [20] perpendicular thermal
conductivity, κ⊥ ∼ p−1/2, which varied from 5.7 × 10−6 to 16 × 10−6 as the pressure p varied from 0.0007

10
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to 0.0077. In the normalized units used in this calculation where the toroidal magnetic field and minor radius
of the device were both unity, a constant viscosity is used with ν = 10−4 and a uniform parallel thermal
conductivity of κ‖ = 106. The central value of the resistivity was 10−6. These parameters do not significantly
affect the efficiency or convergence properties of the algorithm used, and a comprehensive physics paper
illustrating how the behavior of the system changes as the parameters are varied is under preparation.

A current controller is included that is in a feedback loop to provide a loop voltage at the boundary
to maintain the plasma current at its initial value. The loop voltage provides thermal energy through ohmic
heating. As the calculation proceeds, the current density periodically peaks in the central cross section of
the torus, becomes unstable, reconnects and broadens [3]. Each time it becomes unstable and reconnects; the
kinetic energy of the system increases and then decreases when the reconnection is complete. This sequence
is illustrated in figure 6. The details of the first reconnection event are dependent on the initial conditions, but
after many reconnection events, the system takes on a periodic cycle and the calculation is stopped. The time
step used in these runs was 1t = 40τA. Because the total simulation time is so long compared to the Alfvén
wave transit time, we are able to compute the stability behavior of the plasma with self-consistent profiles that
are determined solely by the transport model and boundary conditions. These calculations have spanned the
timescales between ideal MHD and plasma transport.

7. Summary

Solving the 3D MHD equations in a highly magnetized high-temperature plasma is difficult because of the
multiplicity of timescales associated with ideal MHD wave propagation and stability, magnetic reconnection
and transport. If one casts this as an implicit system, the implicit matrix contains a large range of eigenvalues
associated with the three different MHD wave types.

We have presented a three-stage preconditioning technique for solving the implicit resistive MHD
equations in a tokamak that allows a large time step to be used. The split-implicit method reduces the
matrix size by 2 and makes the matrix near symmetric and diagonally dominant. The annihilation operators
approximately split the matrix into three diagonal blocks, each with a greatly reduced condition number. A
block-Jacobi preconditioner dramatically reduces the condition number of each of the diagonal blocks. The
final preconditioned matrix is then given to GMRES and converges in tens or a few hundreds of iterations
even for a fine zoned problem. We presented an application showing repeating sawteeth that demonstrates the
ability to calculate on multiple timescales. The periodic stability behavior is directly dependent on the transport
model specified.

Appendix. The block-Jacobi preconditioner

We adopt the standard finite-difference notation where x = j1x, j = 0 · · · Nx and so on and the centered
finite-difference operator is defined as δ2

x8 = 1x−2(8 j+1−28 j +8 j−1) and so on. Consider the 3D Helmholtz
equation in discretized form:[

1 − s
(
δ2

x + δ2
y + δ2

z

)]
8 jkl = r jkl . (A.1)

The discrete eigenvalues of equation (A.1) are

λm,n,p = 1 −
2s

1x2

(
cos

mπ

Nx
− 1

)
−

2s

1y2

(
cos

nπ

Ny
− 1

)
−

2s

1z2

(
cos

pπ

Nz
− 1

)
, m, n, p = 0, N − 1.

(A.2)

These are seen to approach the eigenvalues of the continuous equation

λm,n,p = 1 + s

[(
mπ

L x

)2

+

(
nπ

L y

)2

+

(
pπ

L z

)2
]

, m, n, p = 0, . . . ,∞. (A.3)

11
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Expanding out the centered finite-difference operator in z gives[
1 − sδ2

x − sδ2
y + 2

s

1z2

]
8 jkl −

s

1z2
8 jkl+1 −

s

1z2
8 jkl−1 = r jkl . (A.4)

A block-Jacobi preconditioner corresponds to inverting the operator in brackets for each l value
independently. To accomplish this, we apply a finite Fourier transform in the x- and y-directions:

8̃mnl =
1

Nx Ny

Nx−1∑
j=0

Ny−1∑
k=0

8 jkl exp

(
2π i jm

Nx
+

2π ikn

Ny

)
, (A.5a)

8 jkl =

Nx−1∑
m=0

Ny−1∑
n=0

8̃mnl exp

(
−

2π i jm

Nx
−

2π ikn

Ny

)
. (A.5b)

Applying the transform given in (A.5b) to (A.4) gives[
1 −

2s

1x2

(
cos

mπ

Nx
− 1

)
−

2s

1y2

(
cos

nπ

Ny
− 1

)
+ 2

s

1z2

]
8̃mnl −

s

1z2
8̃mnl+1 −

s

1z2
8̃mnl−1 = r̃mnl .

(A.6)

Alternatively, upon defining and dividing by

Dm,n ≡

[
1 −

2s

1x2

(
cos

mπ

Nx
− 1

)
−

2s

1y2

(
cos

nπ

Ny
− 1

)
+ 2

s

1z2

]
, (A.7)

we have

8̃mnl −
s

Dm,n1z2
8̃mnl+1 −

s

Dm,n1z2
8̃mnl−1 =

r̃mnl

Dm,n
. (A.8)

Now, transforming back using (A.5a), we have

8 jkl −
s

1z2

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n
8̃mnl+1 exp

(
−

2π i jm

Nx
−

2π ikn

Ny

)

−
s

1z2

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n
8̃mnl−1 exp

(
−

2π i jm

Nx
−

2π ikn

Ny

)

=

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n
r̃mnl exp

(
−

2π i jm

Nx
−

2π ikn

Ny

)
.

Alternatively, using (A.5a) again,

8 jkl −
s

1z2 Nx Ny

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n

Nx−1∑
j ′=0

Ny−1∑
k′=0

8 j ′k′l+1 exp

(
2π i

(
j ′

− j
)

m

Nx
+

2π i
(
k ′

− k
)

n

Ny

)

−
s

1z2 Nx Ny

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n

Nx−1∑
j ′=0

Ny−1∑
k′=0

8 j ′k′l−1 exp

(
2π i

(
j ′

− j
)

m

Nx
+

2π i
(
k ′

− k
)

n

Ny

)

=

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n
r̃mnl exp

(
−

2π i jm

Nx
−

2π ikn

Ny

)
.
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Table A.1. Condition numbers for select parameters.

S Nx = Ny Nz Lx = Ly Lz Original Final Ratio

10 10 4 1 10 8.07E3 7.4 1.09E3
20 10 4 1 10 1.60E4 13.8 1.16E3
100 10 4 1 10 8.00E4 65. 1.23E3
1000 10 4 1 10 8.00E5 641 1.24E4
1000 20 4 1 10 3.2E6 641 4.9E3
1000 20 8 1 10 3.2E6 2.56E3 1.2E3

Next, define the matrices

A jk
j ′k′ ≡

1

Nx Ny

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n
exp

(
2π i

(
j ′

− j
)

m

Nx
+

2π i
(
k ′

− k
)

n

Ny

)
. (A.9)

We have

8 jkl −
s

1z2

Nx−1∑
j ′=0

Ny−1∑
k′=0

A jk
j ′k′ •

[
8 j ′k′l+1 + 8 j ′k′l−1

]
=

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n
r̃mnl exp

(
−

2π i jm

Nx
−

2π ikn

Ny

)
.

(A.10)

Now, we transform in the z-direction (l index),

8 jkl =

Nz−1∑
p=0

8̄ jkp exp (−2π ilp/Nz), (A.11a)

8̄ jkp =
1

Nz

Nz−1∑
p=0

8 jkl exp (+2π ilp/Nz). (A.11b)

With this, equation (A.10) becomesI −
2s

1z2

Nx−1∑
j ′=0

Ny−1∑
k′=0

A jk
j ′k′ cos

(
2πp

Nz

) • 8̄ jkp =

Nz−1∑
l=0

Nx−1∑
m=0

Ny−1∑
n=0

1

Dm,n

¯̃rmnl exp 2π i

(
−

jm

Nx
−

kn

Ny
+

lp

Nz

)
.

(A.12)

So, the eigenvalues satisfy

λ8̄ jkp =

I −
2s

1z2

Nx−1∑
j ′=0

Ny−1∑
k′=0

A jk
j ′k′ cos

(
2πp

Nz

) 8̄ jkp. (A.13)

Alternatively,∣∣∣∣∣∣(1 − λ)I −
2s

1z2

Nx−1∑
j ′=0

Ny−1∑
k′=0

A jk
j ′k′ cos

(
2πp

Nz

)∣∣∣∣∣∣ = 0. (A.14)

The condition number is the ratio of the largest to the smallest eigenvalue. In table A.1, we compare
the condition number of the original system, given by equation (A.2), to the preconditioned system, given by
equation (A.14). We see that for these parameters, the condition number can be reduced by a factor of over 103

by the block-Jacobi preconditioning.
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